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A model problem is presented which qualitatively describes a pressure-driven insta-

bility which can occur in the divertor region of a tokamak where the poloidal field

becomes small. The model problem is described by a horizontal slot with a verti-

cal magnetic field which plays the role of the poloidal field. Line-tying boundary

conditions are applied at the planes defining the slot. A toroidal field lying parallel

to the planes is assumed to be very strong, thereby constraining the possible struc-

ture of the perturbations. Axisymmetric perturbations which leave the toroidal field

unperturbed are analyzed. Ideal magnetohydrodynamics is used, and the instability

threshold is determined by the energy principle. Because of the boundary conditions,

the Euler equation is, in general, non-separable except at marginal stability. This

problem may be useful in understanding the source of heat transport into the private

flux region in a snowflake divertor which possesses a large region of small poloidal

field, and for code benchmarking as it yields simple analytic results in an interesting

geometry.
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I. INTRODUCTION

A well known feature of the flute instability is its capacity to develop even in the presence

of a large confining magnetic field1. This instability has been studied in a number of papers;

for reviews see, e.g.,2,3. What we consider here is a peculiar, analytically solvable configura-

tion in which an axisymmetric plasma is confined by a combination of a very strong toroidal

magnetic field and a weak poloidal magnetic field. The geometry of our model is shown in

Fig. 1. The horizontal axis is the radial distance from the major axis of the device, and

the vertical axis lies along the major axis, represented by the dashed-dotted line, which is

defined to be the z direction. The plasma is shown as the gray shaded region. The magnetic

field is B = Btφ̂+Bpẑ with φ̂ pointing into the page. On the figure, the toroidal field, Bt, is

into the page and indicated by the blue ‘x’es, and the poloidal field, Bp, is vertical and indi-

cated by the red lines. In the vertical direction, the plasma is limited by conducting plates,

illustrated by the green lines. In the presence of a vertical field, the line-tying boundary

conditions can stabilize the plasma3.

The plasma pressure, p, is assumed to be very small compared to the toroidal field

magnetic pressure so that, βt ≡ 8πp/B2
t � 1 (here and throughout the paper, we use the

CGS system of units). On the other hand, the poloidal field, Bp, can be arbitrary, i.e. the

parameter, βp ≡ 8πp/B2
p can vary from zero to infinity. The case of a very small Bp (and

large βp) is of relevance to the plasma stability near the null of the poloidal field in the

divertor; we focus our analysis on just this case, βp � 1. We later establish a qualitative

correspondence between our simple model and a divertor geometry.

We consider a uniform Bp; the equilibrium is provided by the interaction of the poloidal

current with density, jp, with the toroidal field,

dp

dr
= −jpBt/c, (1)

where c is the speed of light. From Ampère’s law, the current density can be eliminated

leading to the equation
d

dr

(
p+

B2
t

8π

)
+
B2
t

4πr
= 0. (2)

Solving for the field in terms of the pressure gives the result that

B2
t (r) =

(r0
r

)2
B2
t0 − 8π

∫ r

r0

dp(r′)

dr′

(
r′

r

)2

dr′, (3)
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FIG. 1. Magnetic geometry of problem of interest. Vertical axis is major axis, indicated by the

dash-dotted line, and the horizontal axis is radial distance from the major axis. Shaded, gray

region is an annulus of plasma. Blue ‘x’es represent the toroidal field that points into the page.

Poloidal field is represented by the red lines. Conducting plates are represented by the thick green

lines. Possibly stable or unstable depending on value of βp and distance between plates. Asterisks

are used to make connection to Fig. 2.

where Bt0 is a constant which characterizes the vacuum fields that would exist in the absence

of a plasma, and r0 is a characteristic radius used to specify the toroidal field. Because

βt � 1, the second term in Eq. (3) is negligible with the toroidal field well described by

the vacuum field alone. In Appendix A, we discuss a more general equilibrium where the

toroidal current is allowed and Bp can have a radial dependence.

If the poloidal field vanishes, the plasma is obviously unstable with respect to the

toroidally-symmetric (n = 0) flute mode. Plasma convection in the form of toroidally-

symmetric “rolls” would then ensue. Inclusion of a poloidal field anchored to the conducting

plates will provide some stabilizing effect due to the bending of the field lines. Eventually,

at strong enough poloidal field, the plasma is stabilized. Our paper contains a derivation of

the stability limit of this peculiar flute-like n = 0 mode, which does not perturb the strong

toroidal field but does perturb a weak poloidal field. Somewhat surprisingly, the stabiliza-

tion occurs at relatively low values of Bp, corresponding to βp � 1 when parameters for a

generic tokamak are used.

Beyond the application to divertor physics, the problem posed here is simple enough to
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yield analytic results, but nevertheless, possesses an interesting geometry. The results could

be useful for code benchmarking. Further, the conclusions help to elucidate interesting basic

physics.

This manuscript is organized as follows. The simplified geometry and its relation to the

snowflake divertor is discussed in Section II. A general theoretical framework is then de-

scribed in Section III. The governing equations and boundary conditions are stated with

the energy principle4 which properly accounts for the small parameters present in the prob-

lem, and an Euler equation is then given for the axisymmetric perturbations of interest.

Instability thresholds are then derived in Section IV. Discussion and major conclusions are

presented in Section V. Finally, a more general equilibrium is discussed in Appendix A, and

separability in an infinite plasma is discussed in Appendix B.

II. RELATION TO DIVERTOR

This problem is a simple model of the divertor region in a tokamak with the divertor plates

enforcing line-tying boundary conditions. The magnetic geometry in a real divertor is, of

course, more complex, but many of the fundamental features are contained by the simple

problem described above. Since the toroidal beta, βt = 8πp/B2
t , is much smaller than unity,

the toroidal field acts as an additional constraint on the system, making it energetically

unfavorable to perturb the toroidal field. The poloidal field, in contrast, vanishes at the null

point, creating a region in the plasma over which the poloidal beta, βp = 8πp/B2
p , is much

greater than unity. An axisymmetric, quasi-flute mode can then be considered which leaves

the toroidal field completely unperturbed, but allows for perturbations in the poloidal field.

Because the mode leaves the toroidal field unperturbed, this mode is axisymmetric (i.e. it

does not depend on the toroidal coordinate), and the toroidal field strength is irrelevant to

both the growth rates and the instability thresholds. These qualities reflect the quasi-flute

nature of the instability with the line-tying boundary conditions stabilizing the mode to a

degree in the presence of the poloidal field.

For a standard divertor configuration, the region over which βp = 8πp/B2
p � 1 is generally

quite small. In contrast, in a snowflake divertor5,6, this region is much larger because the

null is second order as opposed to the first order null in the standard divertor. As a result,

the poloidal field scales as Bp ∝ d2 where d is the distance from the null point. For a
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given value of βp in the midplane, the region over which βp exceeds some characteristic

value is dramatically larger in the snowflake divertor than in a standard divertor as is shown

in previous papers7,8 and in Section V. Experimentally, the snowflake divertor has been

realized on NSTX9,10, TCV11–13, and DIII-D14. The resulting plasmas had many favorable

qualities, one of which was spreading of the heat flux to the private flux region and splitting

it over multiple strike points. In the vicinity of the null, sharp pressure gradients exist which,

when combined with the curvature of the toroidal field, can drive convective processes7,8.

The axisymmetric, quasi-flute mode is one possible source of this convection.

The geometry of the flux surfaces present in a snowflake divertor is shown in Fig. 2. The

horizontal axis is the radial coordinate and is expressed in terms of x where r = R + x, R

being the major radius of the Bp = 0 circle and r, the radial distance from the major axis.

The vertical axis, z, runs parallel to the major axis, and the toroidal coordinate lies into the

page. The black and red lines represent the nested magnetic flux surfaces with the thicker

black lines representing the separatrices. The thick green lines are representative of the

divertor plates upon which heat is deposited due to the streaming of the plasma along the

field lines. The core plasma is contained in the upper most sextant with the two adjacent

sextants containing the scrape off layer (SOL). The three remaining sextants in the lower

half plane are private flux regions and are largely isolated from the remainder of the plasma.

In modeling the private flux region, there exist large pressure gradients normal to the flux

surfaces. These pressure gradients combined with regions of unfavorable curvature may give

rise to plasma instability which leads to heat transport across flux surfaces. This can lead

to heat flux being deposited upon the lower two divertor plates, thus spreading the incident

energy from two strike points to four.

The complicated geometry present in the snowflake, while certainly important, is not

included in our zeroth order examination of stability. To make the connection between the

general divertor geometry and the simplified geometry, two divertor plates have been marked

by an asterisk in both Fig. 1 and Fig. 2. Focus is given to the private flux region in Fig. 2

that has red lines with the other private flux regions ignored. If the orientations of the two

plates in Fig. 2 are changed such that they are parallel to each other and the connecting

flux surfaces are rectified, Fig. 2 is transformed into Fig. 1 with the asterisks marking the

position to which the plates have shifted. In making the transformation, the orientation of

the coordinates is chosen such that the vector ẑ points in the vertical direction, the vector r̂
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FIG. 2. Flux surfaces of snowflake divertor. Horizontal axis is radial distance from the null point.

Green lines represent divertor plates, thicker black lines are separatrices, and thin lines are plasma

flux surfaces. If red lines are stretched vertically and divertor plates marked by asterisks are

reoriented, geometry reduces to Fig. 1 which is possibly unstable.

points to the right, and the toroidal direction, φ̂, points into the board. The divertor plates

exist as planes located at z = 0, L, at which the appropriate boundary conditions must be

imposed.

III. THEORY

In performing stability analysis, the ideal MHD energy principle4 is employed in the form

ω2 =
WF

K
, (4)

K =
1

2

∫
ρ |ξ|2 dV, (5)

WF =
1

2

∫ [
γp (∇ · ξ)2 + (∇ · ξ) (ξ · ∇p)− j

c
· (Q× ξ) +

Q2

4π

]
dV, (6)

In the above expressions, ξ represents the plasma displacement from equilibrium and is

assumed to have harmonic time dependence with frequency ω. The kinetic energy is equal

to −ω2K, and the potential energy is comprised solely of a fluid term, WF . The mass density

is defined by ρ, γ is the ratio of specific heats, p is the pressure, j is the equilibrium current

density, Q = ∇×(ξ ×B) is the perturbed magnetic field, and B is the equilibrium magnetic

field. Because the plates are assumed to be rigid, ξz must vanish at the plates. Further, the
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divertor plates are assumed to be perfectly conducting so that line-tying boundary conditions

can be assumed. The fact that the equilibrium magnetic field has a normal component at the

plates should not be viewed as a contradiction of these boundary conditions. The equilibrium

component of the magnetic field is assumed to have penetrated into the divertor plates on

a time scale much longer than that which characterizes the unstable modes. From Ohms’

law for a perfectly conducting plasma,

E =
iω

c
ξ ×B. (7)

In order that the tangential components of the electric field vanish at the plates, the other

two components of the plasma displacement, ξr and ξφ, must also vanish. These boundary

conditions justify the neglect of the boundary terms in the energy principle. At marginal

stability, the potential energy will satisfy the relation WF = 0.

Perturbations are considered which are of the form,

ξ ×Btφ̂ = ∇ψ. (8)

With the above choice, ξφ is not related to ψ and is left as a free parameter. However, in

the situation considered, the plasma motion in the φ direction decouples from the motion

in the poloidal plane and represents a stable, torque mode. For this reason, ξφ = 0 is

chosen. With this choice and the above relation, the toroidal field remains unperturbed.

This is necessary because the toroidal field is very strong. Because the toroidal field is

unperturbed, the instability threshold is independent of Bt. Further, we specialize to modes

that are axisymmetric. From the above expression, it is clear that ψ cannot depend on φ,

and with the choice that ξφ = 0, the convection will take place only in the poloidal plane.

This choice of perturbations automatically excludes other possible unstable modes, leading

the final instability threshold to be a sufficient but not necessary condition. Substituting

Eq. (8) into Ohm’s law, we obtain

E =
iω

c
[∇ψ + ξ ×Bp] . (9)

Because axisymmetric displacements are considered and ξφ = 0 is chosen, the two terms in

Eq. (9) are orthogonal. From these conclusions, the physical interpretation of ψ becomes

clear: it is proportional to that portion of the electrostatic potential that gives rise to electric

fields perpendicular to the toroidal field. The boundary conditions can then be summarized

7



as

ξr|z=0, L = 0, ξz|z=0, L = 0, (10)

∂ψ

∂r

∣∣∣∣
z=0,L

= 0,
∂ψ

∂z

∣∣∣∣
z=0,L

= 0. (11)

From Eq. (8), the potential energy can be computed. To do so, the perturbed magnetic

field and the divergence of the plasma displacement are computed using the assumption

that the toroidal field is well approximated by its vacuum field which scales as 1/r. These

quantities are then expressed as

∇ · ξ =
2

rBt

∂ψ

∂z
=

2

r
ξr, (12)

Q = r̂
Bp

Bt

∂2ψ

∂z2
− ẑ

1

r

∂

∂r

(
rBp

Bt

∂ψ

∂z

)
= r̂Bp

∂ξr
∂z
− ẑ

1

r

∂

∂r
(rBpξr) . (13)

These expressions are then combined with the expression for the equilibrium current distri-

bution
4πj

c
= ẑ

1

r

d

dr
(rBt) , (14)

where it has been assumed that Bp is constant. Substituting the previous relations into the

energy principle gives rise to the following equation for the potential energy,

WF =

∫ [
2γpξ2r
r2

+
ξ2r
r

dp

dr
+
B2
p

8π

((
∂ξr
∂z

)2

+

(
1

r

∂(rξr)

∂r

)2
)]

dV. (15)

The boundary condition that ξz = 0 at the divertor plates and the relation in Eq. (12)

coupled with integration by parts have been used to obtain the form shown in Eq. (15). At

this point, further simplification can be made if it is assumed that the perturbations are

localized at a radius much larger than any other scale length in the problem. This is valid

because the pressure variation in the divertor region is very rapid compared to R. This

assumption allows the first term in Eq. (15) to be neglected in favor of the second term and

to expand derivatives in r using the relation r = R + x to lowest order in 1/R. If this is

done, Eq. (15) becomes

WF =

∫ [
ξ2r
R

dp

dx
+
B2
p

8π

((
∂ξr
∂z

)2

+

(
∂ξr
∂x

)2
)]

dV. (16)

The first term in the above equation is the source of free energy which drives the instability.

Next, it is useful to derive the resulting Euler equation associated with the energy prin-

ciple. This can be done either from the energy principle or directly from the equations of
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motion from which the energy principle is derived. Either way, the same equation results,

and it is more easily expressed in terms of the function, ψ, than in terms of ξr. The resulting

differential equation is

∇ ·
[
ρω2

2
∇ψ
]

+
∂2

∂z2

[
− 1

R

dp

dx
ψ +

B2
p

8π
∇2ψ

]
= 0, (17)

where ∇ = x̂∂/∂x + ẑ∂/∂z. The above equation is inseparable in general, i.e. the solution

cannot be written as a product of a function of x and a function of z. This makes it difficult

to obtain the normal modes when not at marginal stability. Semi-analytic methods exist

to solve non-separable problems15, however, since this is a model problem, a sophisticated

treatment is postponed until a more realistic analysis of the precise geometry can be per-

formed. The problem is separable if the conducting plates are removed and the plasma is

assumed to be of infinite extent. This case is examined in Appendix B.

IV. INSTABILITY THRESHOLDS

To obtain an instability threshold, a Gaussian pressure gradient is first assumed,

dp

dx
= − p0√

πδ
e−

x2

δ2 , (18)

where p0 and δ are constants used to specify the amplitude and width of the pressure

gradient. The pressure gradient is steepest at x = 0 or r = R. Further, the pressure profile

is assumed to vanish as x → ∞ so that p0 can be taken to be the total plasma pressure.

This profile describes the outer edge of the plasma. The inner edge is neglected, and it

is assumed to be well separated from the radially localized trial function. A trial function

which satisfies the boundary conditions is chosen to be

ψ = ψ0 (1− cos kz)
1

(
√
πl)

1/2
e−

(x−x0)
2

2l2 , (19)

ξr =
ψ0

Bt

k sin kz
1

(
√
πl)

1/2
e−

(x−x0)
2

2l2 , (20)

ξz =
ψ0

Bt

(1− cos kz)
x− x0
l2

1

(
√
πl)

1/2
e−

(x−x0)
2

2l2 . (21)

The toroidal field, Bt, in the above expressions is evaluated at the major radius, R, and is

taken to be a constant. The wave number, k, is chosen to be k = 2π/L where, as before,

L is the distance between the two divertor plates. The quantity, x0, describes the position
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at which the trial function, ψ, is localized and may not coincide with the point at which

the pressure gradient is steepest. The quantity, l, describes the spatial width over which

the trial function is localized. To be consistent with the assumptions made thus far, it is

assumed that R� L, l.

If the trial function is substituted into Eqs. (5) and (16), and it is assumed that the

plasma density does not vary with radial position, the integrations can be easily performed.

To do so, the differential volume element is taken to be dV = dx dzR dφ. Integration over x

is performed with the limits of the integral expanded to the interval, (−∞,∞), due to the

rapid convergence of the integrand. After performing all integrations, the energy principle

results in

ω2 =
B2
pk

2

8πρ

(
−8πp0

B2
p

e
−

x20
l2+δ2√

π(l2+δ2)

L2

R
+ k2L2 + L2

2l2

)
1
2
k2L2 + 3L2

4l2

, (22)

which leads to the sufficient condition for instability,

βp > R

(
k2 +

1

2l2

)√
π(l2 + δ2)e

x20
l2+δ2 . (23)

It is not surprising that x0 = 0 gives the smallest limit, and this choice is made. Next, the

instability threshold can be further minimized by choosing

l2 =
1

4k2

[
1 +
√

1 + 16k2δ2
]
. (24)

Thus, minimizing Eq. (23) leads to

βp >
kR

2

[
1 +

2

1 +
√

1 + 16k2δ2

]√
π
(

1 +
√

1 + 16k2δ2 + 4k2δ2
)
. (25)

The right hand side of this equation is a monotonically increasing function of k2δ2 suggesting

that the smallest instability threshold will occur when kδ � 1. In this limit,

βp >
√

2πkR. (26)

This limit requires that L� δ, a condition which is easily satisfied in the divertor.

The lowest threshold for instability occurs when the pressure drop is rapid and the gaus-

sian pressure gradient approaches a delta-function. This suggests that the Euler equation be

examined more closely for a delta-function pressure gradient. As will be shown below, when
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this choice is made, Eq. (17) is separable at marginal stability and can be solved exactly.

Thus, the pressure gradient is

−dp

dx
= p0δ(x). (27)

The problem is reduced to solving the equation

∂2

∂z2

[
p0
R
δ(x)ψ +

B2
p

8π
∇2ψ

]
= 0, (28)

subject to the boundary conditions in Eq. (11). The delta-function gives a jump condition for

ψ which must be satisfied by connecting the two solutions on either side of the discontinuity.

Away from the gradient, the equation reduces to Laplace’s equation for the second order

derivative of ψ with respect to z. The solutions are easily written as

∂2ψ

∂z2
= −k2f1(x) cos(kz)− k2f2(x) sin(kz), (29)

∂ψ

∂z
= −kf1(x) sin(kz) + kf2(x) cos(kz) + kf3(x), (30)

ψ = f1(x) cos(kz) + f2(x) sin(kz) + f3(x)kz + f4(x). (31)

Applying the boundary conditions leads to the solution

ψ = f(x) [(kL− sin kL)(1− cos kz)− (1− cos kL)(kz − sin kz)] , (32)

where k is determined by the condition that ∂ψ/∂z must vanish at z = L. This gives two

different quantization conditions for k which depend on whether ψ is even or odd about

z = L/2. The quantization conditions for k are

sin
kL

2
= 0 (even), (33)

tan
kL

2
=
kL

2
(odd). (34)

The most restrictive condition is given by the longest wavelength. For the even mode, the

longest wavelength solution is kL = 2π, and for the odd mode, kL = 2.86 π. Thus, the most

restrictive instability threshold is given by an even mode, and kL = 2π will be assumed in

the analysis that follows. Further, from the differential equation, the function, f(x), can be

determined so that the form of ψ at marginal stability is

ψ = ψ0e
−k|x| (1− cos kz) . (35)
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Finally, the jump condition is determined by integrating Eq. (28) on the interval (−ε, ε) and

taking the limit as ε→ 0. This gives the condition that

p0
R

∂2ψ

∂z2

∣∣∣∣
x=0

+ ∆

(
B2
p

8π

∂3ψ

∂z2∂x

)
= 0, (36)

where ∆ denotes the difference in the limit of the function as x = 0 is approached from both

the right and the left. Substituting in the form of ψ results in

8πp0
B2
p0

> 2kR, (37)

where the inequality is added at this point as a sufficient condition for instability. It is clear

at this point that if L→∞, k → 0, and the plasma is inherently unstable, as is expected.

From ψ, the functions ξr and ξz can be computed and are

ξr =
k

Bt

ψ0e
−k|x| sin kz, (38)

ξz = −sgn(x)k

Bt

ψ0e
−k|x| (1− cos kz) , (39)

where

sgn(x) =
x

|x|
. (40)

The discontinuity in ξz at x = 0 is characteristic of the Rayleigh-Taylor instability. Figure 3

shows the displacement that occurs in the linear stage of the instability. The black dashed

lines represent equilibrium plasma surfaces, and the solid blue lines show how the plasma is

displaced as the instability grows. The conducting planes are placed at z = 0 and z = L.

The instability decays away from the pressure gradient in the x-direction as can be seen in

the figure. It is obvious from this picture that this instability will lead to convective mixing

of the plasma and increased transport across field lines.

A meaningful comparison can now be made between the two instability thresholds in Eqs.

(26) and (37). Equation (26) was the limiting form of Eq. (25) when the Gaussian profile

becomes a delta-function. While Eq. (25) is more general than Eq. (37), Eq. (37) gives a

lower instability threshold than Eq. (26). This is not surprising as the actual eigenfunction

was obtained in deriving Eq. (37) instead of using a trial function. However, the trial

function method is useful when considering more general pressure profiles.
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FIG. 3. Perturbed plasma surfaces of most unstable mode at marginal stability. Vertical axis is

z-coordinate scaled to distance between plates, L. Horizontal axis is distance from peek in pressure

gradient scaled to distance between plates. Dashed black lines are the equilibrium plasma position,

and solid blue lines are the perturbed plasma displacement as given in Eqs. (38) and (39). Mode

drives poloidal convection and would lead to transport of heat flux.

V. CONCLUSIONS

Using the instability limit shown in Eq. (37), an order of magnitude estimate can now be

made for a generic tokamak. The smallest k value is substituted into the equation resulting

in the expression

βp > 4π
R

L
, (41)

where R/L is a parameter greater than unity. For a standard tokamak, R/L ≈ 5 is reason-

able, resulting in the sufficient condition for instability,

βp >∼ 60. (42)

For an ELM event, it is typical that βp ∼ 10−2 in the midplane with βp decreasing by a

factor of 20-30 during normal operation18,19. If a snowflake divertor is assumed, then during

an ELM event, the instability condition would be satisfied for distances, d, from the null

point, satisfying d < a/9, where a is the minor radius. For an ITER-scale facility, this

means that d < 20 cm would correspond to a region over which this quasi-flute mode could

reasonably occur, and convection would result. Normal operation causes the region over

which convection occurs to decrease roughly by a factor of two. If a standard divertor is
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assumed, due to the smaller flux expansion, the convection region is much smaller, shrinking

to d < a/67 during an ELM event. Thus, this mode would not significantly contribute to

convection in a standard divertor configuration. For a spherical tokamak, this convection

region is larger as the smaller aspect ratio of the tokamak means that a value of R/L ≈ 2

would be more appropriate. In the presence of a snowflake divertor,

βp >∼ 24, (43)

results, and convection would occur over a larger region satisfying d < a/7 during an ELM

event. These results may help guide the further investigation of convection in the snowflake

divertor.

It must be emphasized that these results are sufficient conditions for instability, but are

by no means necessary. The type of mode considered in this manuscript is a special class

of instabilities, but they are not general. Ballooning modes are another possible source of

instability, e.g.2,3. For these modes, the large distance traversed by the magnetic field line

between the two conducting plates allows for slow variations of the perturbation along the

field line with rapid variations across the field line. This instability will necessarily perturb

the toroidal field. However, this effect will be offset by the large distance traversed by

the field line between the two plates. As a result, these two competing effects can result

in instability, but in contrast to the axisymmetric, quasi-flute mode, the growth rates and

instability threshold will necessarily depend on the toroidal field strength. The analysis of

these ballooning modes for the problem posed in this manuscript is postponed to a later

publication, but it is important to remember that the mode examined in this manuscript is

not the only possible source of convection.

One more connection of our analysis is that with the gravitational instability. Previous

work has been done in examining convection in a plasma in the presence of a horizontal

magnetic field and a vertical gravitational force in order to model the Rayleigh-Taylor insta-

bility for a magnetized fluid. Newcomb16 presented a calculation in which he showed that

the Schwarzschild criterion for convection in a compressible, ideal fluid holds even for an

electrically conducting fluid in the presence of a horizontal magnetic field. The irrelevance

of the strength of the magnetic field to the convection criterion reflects the fact that flute

modes are driving the convection. The gravitational force in their problem plays the role of

the toroidal curvature pressure term that appears in the analysis presented here. Zweibel
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and Bruhwiler17 extended these ideas by performing the calculation within a vertical slot

with line-tying boundary conditions enforced at the two planes. Their work most closely

resembles the work presented here. The difference is that they consider a situation where

there is no component of the magnetic field parallel to the plates, only the normal com-

ponent. With the inclusion of a strong horizontal field oriented parallel to the plates, a

correspondence can be shown between their work and this paper. The presence of a strong

guide field serves to make the plasma incompressible, leading to stronger plasma stability.

In summary, we have derived instability thresholds for βp for an axisymmetric, curvature-

driven instability in a model, toroidal geometry. Conducting plates are shown to limit the

smallest possible axial wavenumber. These limits hold even as the toroidal field becomes

arbitrarily large. These results have been applied to a divertor, and it has been shown

that the convection region is significantly larger in a snowflake divertor than in a normal

divertor configuration, and this result could explain the increased convection observed in

experiments12,13.
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Appendix A: General Equilibrium

If a toroidal current density, jt is allowed, the equilibrium is now defined by

dp

dr
=
jtBp

c
− jpBt

c
. (A1)

This allows the pressure to be partitioned into two functions, pp and pt, satisfying dpp/ dr =

jtBp/c and dpt/ dr = −jpBt/c. Using Ampère’s law and solving for the fields leads to

B2
p(r) = B2

p0 − 8πpp(r), (A2)

B2
t (r) = B2

t0

(r0
r

)2
− 8π

∫ r

r0

dpt
dr′

(
r′

r

)2

dr′, (A3)

where now, the poloidal field can vary.
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Allowing the poloidal field to vary causes pt to replace p in Eqs. (15) and (16), and the

Euler equation is now given by

∇ ·
[
ρω2

2
∇ψ
]

+
∂2

∂z2

[
− 1

R

dpt
dx

ψ +
B2
p

8π
∇2ψ +

d

dx

(
B2
p

8π

)
∂ψ

∂x

]
= 0, (A4)

In considering a delta-function pressure gradient, the poloidal field can now vary giving

dpt
dx

= −pt0δ(x), (A5)

Bp =

Bpi, x < 0

Bp0, x > 0
. (A6)

Equation (36) is altered only by replacing p0 with pt0, and the values of Bp on both sides of

the discontinuity must be accounted for when computing the jump condition. This leads to

the instability threshold
8πpt0
B2
p0

> kR

(
1 +

B2
pi

B2
p0

)
. (A7)

If Bpi = Bp0, then pt0 = p0 and this reduces to the previous result. If the poloidal field is

confining as much of the plasma pressure as it possibly can, Bpi/Bp0 � 1 and 8πpp/B
2
p0 = 1.

If this is the case, the instability limit becomes

8πp0
B2
p0

> kR + 1 ≈ kR, (A8)

decreasing the instability threshold by a factor of two. Again, taking R/L ≈ 5, then for

an ELM event in a snowflake divertor, d < a/7, a modest improvement. For ITER, this is

satisfied for distances d < 29 cm from the null, which again reduces by a factor of two for

steady state operation.

Appendix B: Infinite Medium

If an infinite medium is considered, Eq. (17) is separable. The function, ψ, can now

be decomposed in terms of Fourier harmonics in the z direction so that ψ ∝ exp (ikz).

Allowing for a poloidal field that varies in the x direction (see Appendix A), the Euler

equation becomes

∂

∂x

[(
ρω2

2k2
−
B2
p

8π

)
∂ψ

∂x

]
+

[
1

R

dpt
dx
− k2

(
ρω2

2k2
−
B2
p

8π

)]
ψ = 0. (B1)
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If a delta function pressure profile is assumed, and the plasma density is assumed to be a

step-function, then the equation is solvable with

ψ = ψ0e
ikz−k|x|. (B2)

The jump condition caused by the delta-function gives the dispersion relation

ω2

k2
=
B2
p0

4πρ̄

1

kR

[
−8πpt0
B2
p0

+ kR

(
1 +

B2
pi

B2
p0

)]
, (B3)

where the same notations in Appendix A have been used, and ρ̄ is the average plasma density

across the jump. It is noteworthy that the instability threshold from the above expression

is the same as given in Appendix A reflecting the separability of both cases. However, since

the plasma is infinite, k can take on arbitrarily small values, and the plasma will be unstable

for any pressure jump, whatsoever.
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